Copied to
clipboard

G = C222Dic18order 288 = 25·32

The semidirect product of C22 and Dic18 acting via Dic18/Dic9=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic9.6D4, C222Dic18, C23.17D18, (C2×C18)⋊Q8, C2.6(D4×D9), C4⋊Dic92C2, (C2×C4).5D18, (C2×C12).1D6, C6.76(S3×D4), C91(C22⋊Q8), C18.4(C2×Q8), Dic9⋊C44C2, C18.16(C2×D4), C22⋊C4.1D9, (C2×C6).3Dic6, (C2×Dic18)⋊2C2, (C2×C36).1C22, C2.6(C2×Dic18), C6.31(C2×Dic6), (C22×C6).38D6, C18.21(C4○D4), C2.6(D42D9), (C2×C18).19C23, C6.73(D42S3), C18.D4.2C2, C3.(Dic3.D4), (C22×C18).8C22, (C22×Dic9).3C2, C22.39(C22×D9), (C2×Dic9).24C22, (C3×C22⋊C4).2S3, (C9×C22⋊C4).1C2, (C2×C6).176(C22×S3), SmallGroup(288,88)

Series: Derived Chief Lower central Upper central

C1C2×C18 — C222Dic18
C1C3C9C18C2×C18C2×Dic9C22×Dic9 — C222Dic18
C9C2×C18 — C222Dic18
C1C22C22⋊C4

Generators and relations for C222Dic18
 G = < a,b,c,d | a2=b2=c36=1, d2=c18, cac-1=ab=ba, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 420 in 111 conjugacy classes, 46 normal (38 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, Q8, C23, C9, Dic3, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, C18, C18, Dic6, C2×Dic3, C2×C12, C22×C6, C22⋊Q8, Dic9, Dic9, C36, C2×C18, C2×C18, C2×C18, Dic3⋊C4, C4⋊Dic3, C6.D4, C3×C22⋊C4, C2×Dic6, C22×Dic3, Dic18, C2×Dic9, C2×Dic9, C2×C36, C22×C18, Dic3.D4, Dic9⋊C4, C4⋊Dic9, C18.D4, C9×C22⋊C4, C2×Dic18, C22×Dic9, C222Dic18
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, C4○D4, D9, Dic6, C22×S3, C22⋊Q8, D18, C2×Dic6, S3×D4, D42S3, Dic18, C22×D9, Dic3.D4, C2×Dic18, D4×D9, D42D9, C222Dic18

Smallest permutation representation of C222Dic18
On 144 points
Generators in S144
(1 19)(2 73)(3 21)(4 75)(5 23)(6 77)(7 25)(8 79)(9 27)(10 81)(11 29)(12 83)(13 31)(14 85)(15 33)(16 87)(17 35)(18 89)(20 91)(22 93)(24 95)(26 97)(28 99)(30 101)(32 103)(34 105)(36 107)(37 128)(38 56)(39 130)(40 58)(41 132)(42 60)(43 134)(44 62)(45 136)(46 64)(47 138)(48 66)(49 140)(50 68)(51 142)(52 70)(53 144)(54 72)(55 110)(57 112)(59 114)(61 116)(63 118)(65 120)(67 122)(69 124)(71 126)(74 92)(76 94)(78 96)(80 98)(82 100)(84 102)(86 104)(88 106)(90 108)(109 127)(111 129)(113 131)(115 133)(117 135)(119 137)(121 139)(123 141)(125 143)
(1 90)(2 91)(3 92)(4 93)(5 94)(6 95)(7 96)(8 97)(9 98)(10 99)(11 100)(12 101)(13 102)(14 103)(15 104)(16 105)(17 106)(18 107)(19 108)(20 73)(21 74)(22 75)(23 76)(24 77)(25 78)(26 79)(27 80)(28 81)(29 82)(30 83)(31 84)(32 85)(33 86)(34 87)(35 88)(36 89)(37 110)(38 111)(39 112)(40 113)(41 114)(42 115)(43 116)(44 117)(45 118)(46 119)(47 120)(48 121)(49 122)(50 123)(51 124)(52 125)(53 126)(54 127)(55 128)(56 129)(57 130)(58 131)(59 132)(60 133)(61 134)(62 135)(63 136)(64 137)(65 138)(66 139)(67 140)(68 141)(69 142)(70 143)(71 144)(72 109)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 133 19 115)(2 132 20 114)(3 131 21 113)(4 130 22 112)(5 129 23 111)(6 128 24 110)(7 127 25 109)(8 126 26 144)(9 125 27 143)(10 124 28 142)(11 123 29 141)(12 122 30 140)(13 121 31 139)(14 120 32 138)(15 119 33 137)(16 118 34 136)(17 117 35 135)(18 116 36 134)(37 95 55 77)(38 94 56 76)(39 93 57 75)(40 92 58 74)(41 91 59 73)(42 90 60 108)(43 89 61 107)(44 88 62 106)(45 87 63 105)(46 86 64 104)(47 85 65 103)(48 84 66 102)(49 83 67 101)(50 82 68 100)(51 81 69 99)(52 80 70 98)(53 79 71 97)(54 78 72 96)

G:=sub<Sym(144)| (1,19)(2,73)(3,21)(4,75)(5,23)(6,77)(7,25)(8,79)(9,27)(10,81)(11,29)(12,83)(13,31)(14,85)(15,33)(16,87)(17,35)(18,89)(20,91)(22,93)(24,95)(26,97)(28,99)(30,101)(32,103)(34,105)(36,107)(37,128)(38,56)(39,130)(40,58)(41,132)(42,60)(43,134)(44,62)(45,136)(46,64)(47,138)(48,66)(49,140)(50,68)(51,142)(52,70)(53,144)(54,72)(55,110)(57,112)(59,114)(61,116)(63,118)(65,120)(67,122)(69,124)(71,126)(74,92)(76,94)(78,96)(80,98)(82,100)(84,102)(86,104)(88,106)(90,108)(109,127)(111,129)(113,131)(115,133)(117,135)(119,137)(121,139)(123,141)(125,143), (1,90)(2,91)(3,92)(4,93)(5,94)(6,95)(7,96)(8,97)(9,98)(10,99)(11,100)(12,101)(13,102)(14,103)(15,104)(16,105)(17,106)(18,107)(19,108)(20,73)(21,74)(22,75)(23,76)(24,77)(25,78)(26,79)(27,80)(28,81)(29,82)(30,83)(31,84)(32,85)(33,86)(34,87)(35,88)(36,89)(37,110)(38,111)(39,112)(40,113)(41,114)(42,115)(43,116)(44,117)(45,118)(46,119)(47,120)(48,121)(49,122)(50,123)(51,124)(52,125)(53,126)(54,127)(55,128)(56,129)(57,130)(58,131)(59,132)(60,133)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,141)(69,142)(70,143)(71,144)(72,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,133,19,115)(2,132,20,114)(3,131,21,113)(4,130,22,112)(5,129,23,111)(6,128,24,110)(7,127,25,109)(8,126,26,144)(9,125,27,143)(10,124,28,142)(11,123,29,141)(12,122,30,140)(13,121,31,139)(14,120,32,138)(15,119,33,137)(16,118,34,136)(17,117,35,135)(18,116,36,134)(37,95,55,77)(38,94,56,76)(39,93,57,75)(40,92,58,74)(41,91,59,73)(42,90,60,108)(43,89,61,107)(44,88,62,106)(45,87,63,105)(46,86,64,104)(47,85,65,103)(48,84,66,102)(49,83,67,101)(50,82,68,100)(51,81,69,99)(52,80,70,98)(53,79,71,97)(54,78,72,96)>;

G:=Group( (1,19)(2,73)(3,21)(4,75)(5,23)(6,77)(7,25)(8,79)(9,27)(10,81)(11,29)(12,83)(13,31)(14,85)(15,33)(16,87)(17,35)(18,89)(20,91)(22,93)(24,95)(26,97)(28,99)(30,101)(32,103)(34,105)(36,107)(37,128)(38,56)(39,130)(40,58)(41,132)(42,60)(43,134)(44,62)(45,136)(46,64)(47,138)(48,66)(49,140)(50,68)(51,142)(52,70)(53,144)(54,72)(55,110)(57,112)(59,114)(61,116)(63,118)(65,120)(67,122)(69,124)(71,126)(74,92)(76,94)(78,96)(80,98)(82,100)(84,102)(86,104)(88,106)(90,108)(109,127)(111,129)(113,131)(115,133)(117,135)(119,137)(121,139)(123,141)(125,143), (1,90)(2,91)(3,92)(4,93)(5,94)(6,95)(7,96)(8,97)(9,98)(10,99)(11,100)(12,101)(13,102)(14,103)(15,104)(16,105)(17,106)(18,107)(19,108)(20,73)(21,74)(22,75)(23,76)(24,77)(25,78)(26,79)(27,80)(28,81)(29,82)(30,83)(31,84)(32,85)(33,86)(34,87)(35,88)(36,89)(37,110)(38,111)(39,112)(40,113)(41,114)(42,115)(43,116)(44,117)(45,118)(46,119)(47,120)(48,121)(49,122)(50,123)(51,124)(52,125)(53,126)(54,127)(55,128)(56,129)(57,130)(58,131)(59,132)(60,133)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,141)(69,142)(70,143)(71,144)(72,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,133,19,115)(2,132,20,114)(3,131,21,113)(4,130,22,112)(5,129,23,111)(6,128,24,110)(7,127,25,109)(8,126,26,144)(9,125,27,143)(10,124,28,142)(11,123,29,141)(12,122,30,140)(13,121,31,139)(14,120,32,138)(15,119,33,137)(16,118,34,136)(17,117,35,135)(18,116,36,134)(37,95,55,77)(38,94,56,76)(39,93,57,75)(40,92,58,74)(41,91,59,73)(42,90,60,108)(43,89,61,107)(44,88,62,106)(45,87,63,105)(46,86,64,104)(47,85,65,103)(48,84,66,102)(49,83,67,101)(50,82,68,100)(51,81,69,99)(52,80,70,98)(53,79,71,97)(54,78,72,96) );

G=PermutationGroup([[(1,19),(2,73),(3,21),(4,75),(5,23),(6,77),(7,25),(8,79),(9,27),(10,81),(11,29),(12,83),(13,31),(14,85),(15,33),(16,87),(17,35),(18,89),(20,91),(22,93),(24,95),(26,97),(28,99),(30,101),(32,103),(34,105),(36,107),(37,128),(38,56),(39,130),(40,58),(41,132),(42,60),(43,134),(44,62),(45,136),(46,64),(47,138),(48,66),(49,140),(50,68),(51,142),(52,70),(53,144),(54,72),(55,110),(57,112),(59,114),(61,116),(63,118),(65,120),(67,122),(69,124),(71,126),(74,92),(76,94),(78,96),(80,98),(82,100),(84,102),(86,104),(88,106),(90,108),(109,127),(111,129),(113,131),(115,133),(117,135),(119,137),(121,139),(123,141),(125,143)], [(1,90),(2,91),(3,92),(4,93),(5,94),(6,95),(7,96),(8,97),(9,98),(10,99),(11,100),(12,101),(13,102),(14,103),(15,104),(16,105),(17,106),(18,107),(19,108),(20,73),(21,74),(22,75),(23,76),(24,77),(25,78),(26,79),(27,80),(28,81),(29,82),(30,83),(31,84),(32,85),(33,86),(34,87),(35,88),(36,89),(37,110),(38,111),(39,112),(40,113),(41,114),(42,115),(43,116),(44,117),(45,118),(46,119),(47,120),(48,121),(49,122),(50,123),(51,124),(52,125),(53,126),(54,127),(55,128),(56,129),(57,130),(58,131),(59,132),(60,133),(61,134),(62,135),(63,136),(64,137),(65,138),(66,139),(67,140),(68,141),(69,142),(70,143),(71,144),(72,109)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,133,19,115),(2,132,20,114),(3,131,21,113),(4,130,22,112),(5,129,23,111),(6,128,24,110),(7,127,25,109),(8,126,26,144),(9,125,27,143),(10,124,28,142),(11,123,29,141),(12,122,30,140),(13,121,31,139),(14,120,32,138),(15,119,33,137),(16,118,34,136),(17,117,35,135),(18,116,36,134),(37,95,55,77),(38,94,56,76),(39,93,57,75),(40,92,58,74),(41,91,59,73),(42,90,60,108),(43,89,61,107),(44,88,62,106),(45,87,63,105),(46,86,64,104),(47,85,65,103),(48,84,66,102),(49,83,67,101),(50,82,68,100),(51,81,69,99),(52,80,70,98),(53,79,71,97),(54,78,72,96)]])

54 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H6A6B6C6D6E9A9B9C12A12B12C12D18A···18I18J···18O36A···36L
order122222344444444666669991212121218···1818···1836···36
size1111222441818181836362224422244442···24···44···4

54 irreducible representations

dim1111111222222222224444
type+++++++++-+++-++-+-+-
imageC1C2C2C2C2C2C2S3D4Q8D6D6C4○D4D9Dic6D18D18Dic18S3×D4D42S3D4×D9D42D9
kernelC222Dic18Dic9⋊C4C4⋊Dic9C18.D4C9×C22⋊C4C2×Dic18C22×Dic9C3×C22⋊C4Dic9C2×C18C2×C12C22×C6C18C22⋊C4C2×C6C2×C4C23C22C6C6C2C2
# reps12111111222123463121133

Matrix representation of C222Dic18 in GL6(𝔽37)

3600000
010000
0036000
0003600
000010
000001
,
3600000
0360000
001000
000100
000010
000001
,
010000
3600000
000100
0036000
00001120
00001731
,
3100000
060000
006000
0003100
0000116
00001726

G:=sub<GL(6,GF(37))| [36,0,0,0,0,0,0,1,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[36,0,0,0,0,0,0,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,36,0,0,0,0,1,0,0,0,0,0,0,0,0,36,0,0,0,0,1,0,0,0,0,0,0,0,11,17,0,0,0,0,20,31],[31,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,31,0,0,0,0,0,0,11,17,0,0,0,0,6,26] >;

C222Dic18 in GAP, Magma, Sage, TeX

C_2^2\rtimes_2{\rm Dic}_{18}
% in TeX

G:=Group("C2^2:2Dic18");
// GroupNames label

G:=SmallGroup(288,88);
// by ID

G=gap.SmallGroup(288,88);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,254,219,58,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^36=1,d^2=c^18,c*a*c^-1=a*b=b*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽